Python SDK API
The TrainLoop Evals Python SDK provides zero-touch instrumentation for Python applications.
Installation​
pip install trainloop-sdk
Quick Start​
import trainloop
# Initialize the SDK
trainloop.init(endpoint="http://localhost:8000")
# Your LLM calls are automatically instrumented
import openai
client = openai.OpenAI()
response = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "Hello, world!"}]
)
Configuration​
The SDK can be configured using environment variables or initialization parameters:
Environment Variables​
TRAINLOOP_ENDPOINT
- The endpoint to send traces to (default:http://localhost:8000
)TRAINLOOP_API_KEY
- API key for authentication (optional)TRAINLOOP_DEBUG
- Enable debug logging (default:false
)
Initialization Parameters​
import trainloop
trainloop.init(
endpoint="http://localhost:8000",
api_key="your-api-key",
debug=True
)
Supported Libraries​
The Python SDK automatically instruments the following libraries:
- OpenAI
- Anthropic
- LiteLLM
- LangChain
- LlamaIndex
Manual Instrumentation​
For custom instrumentation, you can use the manual tracing API:
import trainloop
with trainloop.trace("my-llm-call") as span:
span.set_input({"prompt": "Hello, world!"})
# Your LLM call here
span.set_output({"response": "Hello! How can I help you?"})